On Rough Multi-Level Linear Programming Problem

نویسندگان

  • O. E. Emam
  • M. El-Araby
  • M. A. Belal
چکیده

This paper presents a multi-level linear programming problem with random rough coefficients in objective functions. At the first phase of the solution approach and to avoid the complexity of this problem, we begin by converting the rough nature of this problem into equivalent crisp problem. At the second phase, we use the concept of tolerance membership function at each level to solve a Tchebcheff problem till an optimal solution is obtained. Finally, an illustrative example is given to show the application of the proposed model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presentation and Solving Non-Linear Quad-Level Programming Problem Utilizing a Heuristic Approach Based on Taylor Theorem

The multi-level programming problems are attractive for many researchers because of their application in several areas such as economic, traffic, finance, management, transportation, information technology, engineering and so on. It has been proven that even the general bi-level programming problem is an NP-hard problem, so the multi-level problems are practical and complicated problems therefo...

متن کامل

A New Method For Solving Linear Bilevel Multi-Objective Multi-Follower Programming Problem

Linear bilevel programming is a decision making problem with a two-level decentralized organization. The leader is in the upper level and the follower, in the lower level. This study addresses linear bilevel multi-objective multi-follower programming (LB-MOMFP) problem, a special case of linear bilevel programming problems with one leader and multiple followers where each decision maker has sev...

متن کامل

Study on multi-objective nonlinear programming in optimization of the rough interval constraints

This paper deals with multi- objective nonlinear programming problem having rough intervals in the constraints. The problem is approached by taking maximum value range and minimum value range inequalities as constraints conditions, reduces it into two classical multi-objective nonlinear programming problems, called lower and upper approximation problems.  All of the lower and upper approximatio...

متن کامل

A bi-level linear programming problem for computing the nadir point in MOLP

Computing the exact ideal and nadir criterion values is a very ‎important subject in ‎multi-‎objective linear programming (MOLP) ‎problems‎‎. In fact‎, ‎these values define the ideal and nadir points as lower and ‎upper bounds on the nondominated points‎. ‎Whereas determining the ‎ideal point is an easy work‎, ‎because it is equivalent to optimize a ‎convex function (linear function) over a con...

متن کامل

TOPSIS approach to linear fractional bi-level MODM problem based on fuzzy goal programming

The objective of this paper is to present a technique for order preference by similarity to ideal solution (TOPSIS) algorithm to linear fractional bi-level multi-objective decision-making problem. TOPSIS is used to yield most appropriate alternative from a finite set of alternatives based upon simultaneous shortest distance from positive ideal solution (PIS) and furthest distance from negative ...

متن کامل

Multi-choice stochastic bi-level programming problem in cooperative nature via fuzzy programming approach

In this paper, a Multi-Choice Stochastic Bi-Level Programming Problem (MCSBLPP) is considered where all the parameters of constraints are followed by normal distribution. The cost coefficients of the objective functions are multi-choice types. At first, all the probabilistic constraints are transformed into deterministic constraints using stochastic programming approach. Further, a general tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014